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Abstract. The standard-model interpretation of the ratios of charged and neutral B → πK rates, Rc and
Rn, respectively, points towards a puzzling picture. Since these observables are affected significantly by
colour-allowed electroweak (EW) penguins, this “B → πK puzzle” could be a manifestation of new physics
in the EW penguin sector. Performing the analysis in the Rn–Rc plane, which is very suitable for monitoring
various effects, we demonstrate that we may, in fact, move straightforwardly to the experimental region
in this plane through an enhancement of the relevant EW penguin parameter q. We derive analytical
bounds for q in terms of a quantity L, which measures the violation of the Lipkin sum rule, and point out
that strong phases around 90◦ are favoured by the data, in contrast to QCD factorisation. The B → πK
modes imply a correlation between q and the angle γ that, in the limit of negligible rescattering effects
and colour-suppressed EW penguins, depends only on the value of L. Concentrating on a minimal flavour-
violating new-physics scenario with enhanced Z0 penguins, we find that the current experimental values
on B → Xsµ

+µ− require roughly L ≤ 1.8. As the B → πK data give L = 5.7 ± 2.4, L has either to
move to smaller values once the B → πK data improve or new sources of flavour and CP violation are
needed. In turn, the enhanced values of L seen in the B → πK data could be accompanied by enhanced
branching ratios for the rare decays K+ → π+νν̄, KL → π0e+e−, B → Xsνν̄ and Bs,d → µ+µ−. Most
interesting turns out to be the correlation between the B → πK modes and BR(K+ → π+νν̄), with the
latter depending approximately on a single “scaling” variable L̄ = L · (|Vub/Vcb|/0.086)2.3.

1 Introduction

The rich physics potential of B → πK modes is attracting
a lot of interest in the B-physics community [1]. Decays of
this kind are caused by b → dds, uus quark-level processes,
and receive contributions from penguin and tree topolo-
gies, where the latter are associated with the angle γ of
the unitarity triangle of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix. Since the CKM factor |VusV

∗
ub/(VtsV

∗
tb)| ≈

0.02 is tiny, B → πK modes are governed by QCD pen-
guins. Moreover, we have also contributions from elec-
troweak (EW) penguins. In the case of B0

d → π−K+

and B+ → π+K0 modes, these topologies are colour sup-
pressed and play hence only a minor rôle. On the other
hand, EW penguins contribute also in colour-allowed form
to B+ → π0K+ and B0

d → π0K0. Consequently, they are
expected to be sizable in these modes, i.e. of the same order
of magnitude as the tree topologies. Interference between
the tree and penguin topologies leads to sensitivity on γ.

The isospin flavour symmetry of strong interactions
suggests one to consider the following combinations of B →
πK decays: the “mixed” Bd → π∓K±, B± → π±K system
[2–5], the charged B± → π0K±, B± → π±K system [6–9],
and the neutral Bd → π∓K±, Bd → π0K system [8, 9].

The CP -conserving and CP -violating observables of each
system provide sufficient information to determine γ and a
corresponding strong phase. For the following discussion,
we use the ratios of the CP -averaged B → πK branching
ratios introduced in [8]:

R ≡
[

BR(B0
d → π−K+) + BR(B0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]
τB+

τB0
d

,(1)

Rc ≡ 2
[
BR(B+ → π0K+) + BR(B− → π0K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]
, (2)

Rn ≡ 1
2

[
BR(B0

d → π−K+) + BR(B0
d → π+K−)

BR(B0
d → π0K0) + BR(B0

d → π0K0)

]
. (3)

In Table 1, we summarise the current experimental status
of these observables. The final averages for R(c,n) given in
this table have been obtained by using the average branch-
ing ratios from the data of CLEO [10], BaBar [11] and
Belle [12] that read

BR(B+ → π0K+) = (12.82 ± 1.08) · 10−6,
(4)

BR(B+ → π+K0) = (20.62 ± 1.35) · 10−6
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Table 1. The current experimental status of the observables R(c,n)

Observable CLEO (’03) BaBar (’03) Belle (’03) Average
R 1.04 ± 0.26 0.97 ± 0.11 0.91 ± 0.11 0.95 ± 0.07
Rc 1.37 ± 0.40 1.28 ± 0.20 1.16 ± 0.20 1.24 ± 0.13
Rn 0.70 ± 0.24 0.86 ± 0.15 0.73 ± 0.17 0.81 ± 0.10
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Fig. 1. |δc| and |δn| as functions of γ for Rc = 1.24 and
Rn = 0.81, respectively

and

BR(B0
d → π0K0) = (11.21 ± 1.36) · 10−6,

(5)
BR(B0

d → π−K+) = (18.16 ± 0.79) · 10−6 .

Finally, we have used τB+/τB0
d

= 1.086 ± 0.017.
As was already emphasised by two of us in [9], the

pattern of Rc > 1 and Rn < 1 is actually very puzzling
within the standard model (SM). To understand the prob-
lem let us first note that Rc and Rn allow us to determine
CP -conserving strong phases δc and δn as functions of γ,
respectively. As can be seen in Fig. 1, the current central
values for Rc and Rn imply lower bounds for γ around 80◦,
and very different values for the strong phases. However,
these strong phases are not expected to differ so largely
from each other, as can be seen from their exact definitions
in [8]. This problem becomes also obvious in the contour
plots in the B → πK observable space shown in [13]. On
the other hand, no anomalous behaviour is indicated by
the observable R of the mixed B → πK system, where
EW penguins only contribute in colour-suppressed form.
Consequently, as noted in [9], this puzzle could be a mani-
festation of new-physics contributions in the EW penguin
sector, which is a rather popular scenario for physics be-
yond the SM to enter the B → πK system [14, 15]. This
point was also very recently re-emphasised in [16–19].

In 2000, when [9] was written, the B0
d → π0K0 chan-

nel had just been observed by the CLEO collaboration.
Now we have a much better experimental picture, where
interestingly all three experiments point towards Rc > 1
and Rn < 1, as can be seen in Table 1, whereas R ∼ 1. Al-
though the experimental uncertainties are still sizable, we
think that it is legitimate and interesting to return to this

puzzle and to explore in more detail whether enhanced EW
penguins could really provide a solution. Another impor-
tant element of our analysis are rare B and K decays. If we
restrict ourselves to new-physics scenarios with “minimal
flavour violation” (MFV) [20] and enhanced Z0 penguins,
we obtain a nice connection between the B → πK puz-
zle and B → Xsµ

+µ−, K+ → π+νν̄, KL → π0e+e−,
B → Xsνν̄ and Bs,d → µ+µ− decays. In order to make
our findings more transparent, we shall neglect colour-
suppressed EW penguins, SU(3)-breaking contributions
and rescattering effects. A more detailed analysis includ-
ing these effects and addressing more technical aspects
can be found in [21]. The outline of the present paper is
as follows: in Sect. 2, we explore the impact of enhanced
EW penguins on the observables Rc and Rn. In Sect. 3, we
discuss the connection between the value of the relevant
B → πK EW penguin parameter q and Z penguins in
the restricted class of MFV models specified above. These
results are then applied in Sect. 4 to analyse rare B and K
decays and to explore the implications of the corresponding
experimental constraints for the B → πK system. Finally,
we summarise our conclusions in Sect. 5.

2 Enhanced EW penguins in B → πK decays

If we employ the parametrisation introduced in [8], we may
write within the approximations stated above

Rc,n = 1 + 2rc,nB cos δc,n + [B2 + sin2 γ]r2
c,n, (6)

where
B ≡ q − cos γ (7)

is a “universal” quantity for the charged and the neutral
B → πK systems. In addition to γ, it depends on a pa-
rameter q, which measures the ratio of the sum of the
colour-allowed and colour-suppressed EW penguins with
respect to the sum T +C of the colour-allowed and colour-
suppressed tree-diagram-like contributions. Using SU(3)
flavour-symmetry arguments, we can calculate the EW
penguin parameter q within the SM as follows [6]:

q|SM = 0.69 ×
[

0.086
|Vub/Vcb|

]
, (8)

where |Vub/Vcb| = 0.086±0.008. Here we have taken NLO
corrections into account and used the most recent input
parameters [22]. The strong phase ω associated with q
vanishes in the SU(3) limit, and we have already used
ω = 0 in (6). Even values of ω up to 20◦ have very little
influence on our analysis (see [21] for a detailed discussion).
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The parameters rc and rn describe, roughly speaking,
the ratio of T + C and penguin amplitudes, where the
latter are determined by the CP -averaged B± → π±K and
Bd → πK rates, respectively. Using the exact definitions
given in [8] and taking into account that |T + C| can be
fixed through the SU(3) flavour symmetry with the help
of the CP -averaged B± → π±π0 rate [23], we arrive at

rc =
√

2
∣∣∣∣Vus

Vud

∣∣∣∣ fK

fπ

√
BR(B± → π±π0)
BR(B± → π±K0)

= 0.201 ± 0.017, (9)

rn =
∣∣∣∣Vus

Vud

∣∣∣∣ fK

fπ

√
BR(B± → π±π0)
BR(B0

d → π0K0)

√
τB0

d

τB+

= 0.185 ± 0.018, (10)

where we have used BR(B± → π±π0) = (5.3 ± 0.8) · 10−6

and have taken factorizable SU(3)-breaking corrections
into account through the factor fK/fπ.

Finally, δc and δn measure the strong phase differences
between the tree amplitude T + C and the B+ → π+K0

and B0
d → π0K0 penguin amplitudes, respectively. As seen

in (6), with rc ≈ rn ≈ 0.2 and γ and q being universal
quantities, there is no way to reproduce Rc = 1.24 ± 0.13
and Rn = 0.81 ± 0.10 for the same values of δc and δn.
This is in particular clear for the special case of δc ≈
δn ≈ 0 corresponding to QCD factorisation [19,24], where
one finds generally Rc � Rn > 1.0. Even the inclusion of
enhanced “charming penguins” [25] does not help, which
points to a different solution to be discussed below.

In the spirit of Fig. 1, the charged and neutral B → πK
systems were considered separately in [9], also in view of
enhanced EW penguins. The new element we are using
here is the relation

δn = δc + ϕ, (11)

where

sin ϕ =
qrc sin δc√

b
, cos ϕ =

[
1 − qrc cos δc√

b

]
, (12)

with

b ≡ R

Rn
=

(
rc

rn

)2

= 2

[
BR(B0

d → π0K0) + BR(B0
d → π0K0)

BR(B+ → π+K0) + BR(B− → π−K0)

]
τB+

τB0
d

= 1.18 ± 0.16, (13)

providing a link between the charged and neutral B → πK
systems. As discussed in detail in [21], these relations can
be derived with the help of the general parameterisations
introduced in [8]. The remarkable feature of (11) and (12) is
that we may induce a difference between δc and δn through
the EW penguin parameter q, provided δc is sizable. Using
the expression on the left-hand side of (12), we obtain

sin ϕ|SM � qrc ≈ 0.14, (14)

0.5 1 1.5 2 2.5

25

50

75

100

125

150

175

�

Æ �
�Æ
�

�Æ
�

Æ�
Æ�

� � ����
� � ����

Fig. 2. |δc| and |δn| as functions of q for rc = 0.20 and b = 1.18
(solid) and b = 0.80 (dashed)

corresponding to a phase difference ϕ of at most ∼ 8◦ for
δc = 90◦ within the SM. This feature is the origin of the
puzzle reflected by Fig. 1. However, we observe also that the
phase shift is increased through an enhancement of the EW
penguin parameter q. The burning question is now whether
this mechanism can actually reproduce the experimental
pattern of the observables Rc,n. Before we address this
exciting issue, let us first note that the relations given in
(12) imply, furthermore, the following expression:

cos δc =
1 − b + q2r2

c

2qrc
, (15)

allowing us to calculate δc as a function of q for given values
of b and rc, which are fixed through experiment. In Fig. 2,
the solid lines give δc and δn as functions of q for central
values of b and rc.

The variable b coincides with R00 in [19], and con-
sequently b = 0.79 ± 0.08 in the QCD factorisation ap-
proach [19,24], which is significantly below the experimen-
tal value in (13). In Fig. 2, the dashed lines give δc and δn
as functions of q for this low value of b. The smallness of
b in the latter approach can be attributed to the destruc-
tive interference of QCD and EW penguin contributions
in the B0

d → π0K0 decay that takes place when the rele-
vant phase δn is small. Our finding in [9] and in Fig. 2 that
δn > 90◦ can be interpreted as a constructive interference
of QCD and EW penguin contributions in the B0

d → π0K0

decay making the corresponding rate significantly larger
than in the QCD factorisation approach.

If we now go back to (6), it is an easy exercise to derive
the following expressions:

Rc = 1 +
B

q
(1 − b) +

[
B(B + q) + sin2 γ

]
r2
c , (16)

Rn = 1 +
B

bq
(1 − b) +

[
B(B − q) + sin2 γ

] r2
c

b
. (17)

Let us emphasise that (16) and (17) do not involve any
CP -conserving strong phases. Since b and rc,n (up to non-
factorizable SU(3)-breaking corrections) can be directly
determined from experiment, our two key observables Rc
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Fig. 3. Allowed regions in the Rn–Rc plane for q = 0.7 (SM), 1.6 and 2.5. The grey rectangle indicates the 1-σ experimental
bounds on Rn and Rc with their central values

and Rn depend now only on the two “unknowns” q and γ.
Consequently, we have sufficient information to determine
these quantities, which through (11), (12) and (15) would
then fix the strong phases δc,n as well. It is easy to see that
(16) and (17) are invariant under the following transfor-
mations:

q → −q and γ → π − γ. (18)

Consequently, for each solution (q, γ) of our problem there
is a second one, which is given by (−q, π − γ). Since q
may, in principle, also be negative in the presence of new
physics, we cannot discard this case. However, as we will
see in Sect. 4, at least for MFV models, q > 0 turns out to
be more interesting.

It is very instructive to consider the situation in the Rn–
Rc plane, as shown in Fig. 3, where the 1-σ experimental
ranges for Rc and Rn are indicated by the grey rectangle.
Each of the broad bands in this plane represents a given
value of q, while different lines within a band correspond
to different values of the angle γ, which we vary between
60◦ and 120◦. A specific position on a line fixed by q and γ
corresponds to a particular value of b (as indicated on the
inside of the bands) and at the same time (through (15))
to a particular value of δc (as indicated on the outside of
the bands). The closely spaced lines are only drawn when
b lies within the 1-σ experimental region (13), for b outside
this region only the “skeleton” of the band is drawn.

We observe two remarkable features already adver-
tised above.
(1) An increase of q brings us straightforwardly to the ex-
perimental region. This is, in fact, necessary for any value

of γ if current data are confirmed when precision improves.
(2) A large strong phase δc around 90◦ and consequently
also large δn are required.

The last feature indicates that the corrections to fac-
torisation are significantly larger than estimated in the
QCD factorisation approach [19,24]. Interestingly, evidence
for a large strong phase δc ∼ 90◦ follows also from an
analysis of CP violation in Bd → π+π− [13], where the
favoured experimental sign of the corresponding direct CP
asymmetry points, for γ ∈ [0◦, 180◦], towards the interval
δc ∈ [0◦, 180◦]. In the decays employed in [13], EW pen-
guins may only contribute in colour-suppressed form.

In order to obtain further insights, it is useful to exploit
that (16) and (17) imply

L ≡ (Rc − 1) + b(1 − Rn)
2r2

c
= Bq, (19)

where L can be determined from experiment (up to non-
factorizable SU(3)-breaking corrections entering through
the parameter rc). Taking into account (7), this quantity
allows us to calculate q as a function of γ with the help of

q =
1
2

[
cos γ ±

√
cos2 γ + 4L

]
, (20)

where the plus and minus signs give q > 0 and q < 0, re-
spectively. We observe then the third remarkable feature.
(3) Whereas (16) and (17) involve four experimental quan-
tities Rn, Rc, b and rc, the correlation between q and γ
depends on a single quantity, the variable L.
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Fig. 4. γ as a function of q for different values of L. The central
values of γ and q within the SM are also shown

In Fig. 4, we show γ as a function of q for different
values of L. The interesting aspect of this correlation with
respect to the rare decays sensitive to the CKM element
|Vtd| is the strong decrease of the angle γ with increasing
q > 0. As the decrease of γ is related to the decrease of
|Vtd|, this correlation has profound implications for the
rare decay K+ → π+νν̄, as discussed in Sect. 4. For q < 0,
|q| increases with increasing γ.

If we vary γ between 0◦ and 180◦, we obtain

1
2

[
−1 +

√
1 + 4L

]
≤ |q| ≤ 1

2

[
+1 +

√
1 + 4L

]
, (21)

providing interesting analytical bounds on q. Using the
current experimental values given in Table 1, (9) and (13),
we find

L = 5.7 ± 2.4, 1.4 ≤ |q| ≤ 3.4. (22)

Consequently, the B → πK data favour values of |q| which
are substantially larger than the SM value in (8). The
variable L measures, up to an overall factor, the violation
of the Lipkin sum rule [26]. Indeed, using the definition of
L in (19), we find

L =
{
2[Γ (B± → π0K±) + Γ (Bd → π0K)]

− [Γ (B± → π±K) + Γ (Bd → π∓K±)]
}

/{2r2
cΓ (B± → π±K)}. (23)

As can be seen in (19), the large value for L implied by the
B → πK data is directly related to Rc > 1 and Rn < 1,
i.e. to the B → πK puzzle already pointed out in [9]. The
simple expression for L in (19) implies also

L|SM ∼ 0.18, (24)

where we have used the SM values of q = 0.69 and γ = 65◦.
The possible large violation of the Lipkin sum rule and
theoretical interpretations were also discussed in [17, 27]
and very recently in [19]. In Sect. 4, we will see that L
provides an interesting link between the B → πK puzzle
and rare B and K decays.

As we already mentioned after formulae (16) and (17),
the four quantities q, γ, δc and δn can be determined within
the approximations used in this paper. The formulae (11),
(12), (15), (16) and (17) are the basis for this determination
and have been used in the plot in Fig. 3. Still it is instructive
to discuss the determination of q and γ in more detail. To
this end, we use (7) and (19) to find

cos γ = q − L

q
, (25)

which allows us to eliminate γ in the expression (17) for
Rn, thereby yielding

q2 = U ±
√

U2 − V , (26)

with

U =
b(1 − Rn) + (1 + L)r2

c

2r2
c

, V =
(b − 1)L

r2
c

. (27)

Formulae (25) and (26) then give the analytic expressions
for γ and q, respectively.

This discussion shows that the whole system is rather
constrained. Consequently, the fact that a simple change
of q provides a solution to the B → πK puzzle is non-
trivial. As is already evident from Fig. 3, if the parameter
b would substantially differ from the experimental value
in (13), for instance if it was smaller than 1.0,1 we would
miss the experimental values of Rn and Rc even with in-
creased q, although we could well accommodate the viola-
tion of the Lipkin sum rule. This feature is also reflected
by the fact that (26) may not provide a solution at all.
However, with the current experimental uncertainties, no
discrepancy emerges and we consider it very non-trivial to
be able to move to the experimental region in the Rn–Rc
plane by just increasing the value of q.

Another important consequence of our analysis are
potentially large values of the pseudo-asymmetries intro-
duced in [8], which may be written – within the approxi-
mations employed above – as follows:

A
(c,n)
0 = 2rc,n sin δc,n sin γ. (28)

In the case of large CP -conserving phases δc,n as indicated
by our numerical studies, these asymmetries could be as
large as 0.3. A similar pattern emerges if one assumes en-
hanced “charming penguin” contributions [25]. In view of
very large experimental uncertainties in A

(c,n)
0 , such large

values of A
(c,n)
0 cannot be ruled out at present. We will

briefly return to this point in Sect. 4. Finally, the enhanced
EW penguins would enhance other branching ratios, like
the ones for Bs → π0φ and Bs → ρ0φ [28].

To summarise, if the current data will be confirmed
with increasing experimental precision, there are four mes-
sages from these considerations.

1 For these considerations it is important that there are four
independent observables, corresponding to four branching ra-
tios; thus, b is indeed independent of Rn and Rc
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(1) The EW penguin parameter q must be substantially
larger than in the SM for any value of γ.
(2) Both δc and δn must be large and must differ signifi-
cantly from each other, where the difference is correlated
with the value of q as given in (12).
(3) The value of b must be larger than 1 in order for the
enhanced value of q to provide a solution to the Rc > 1
and Rn < 1 puzzle. Moreover we see the following.
(4) A correlation between q and γ is implied by the B →
πK data, as can be seen in (20). It depends on the single
variable L, which measures the violation of the Lipkin sum
rule.

3 The value of q and the Z0 penguin

Next we want to investigate whether the enhanced values
of q and L given in (22) are compatible with the measured
branching ratios of rare decays in a specific extension of
the SM, where a simple relation between the parameter
q entering the B → πK observables and the Z0 penguin
diagram function C [29], which governs many rare decays,
can be established.

To this end, we consider a simple extension of the SM,
where the dominant new-physics contributions enter only
the Z0 penguin function C, which depends in the SM only
on the ratio m2

t /M
2
W and equals C ≈ 0.80. For this value of

C, the q given in (8) is obtained. This class of extensions
of the SM has already been discussed in several papers
in the past [30–32], but not in the context of B → πK
decays. They can be considered as a restricted class of
MFV models [20] in which the CKM matrix is the only
source of flavour and CP violation, the local operators are
as in the SM and the restriction comes from the assumption
that the dominant new-physics effects enter through the
Z0 penguin diagrams.

The value of q can be determined from the Wilson
coefficients C9(µb) and C10(µb) (µb = O(mb)) of the (V −
A)⊗ (V −A) EW penguin operators Q9 and Q10 entering
the effective Hamiltonian for ∆B = 1 non-leptonic decays
[29]. Explicitly, in the SU(3) flavour limit, one has [6]

qeiω = −3
2

1
λ|Vub/Vcb|

[
C9(µb) + C10(µb)
C ′

1(µb) + C ′
2(µb)

]
, (29)

where, following [8], we have replaced the Wilson coeffi-
cients C1,2 of the current–current operators Q1,2 present
in the formulae of [6] by

C ′
1(µb) = C1(µb) +

3
2
C9(µb),

C ′
2(µb) = C2(µb) +

3
2
C10(µb), (30)

as should be done in the case of enhanced EW penguins.
We observe that we have ω = 0 in this approximation.

The coefficients C9(µb) and C10(µb) can be calculated
by means of NLO renormalisation group equations from
the initial conditions for the Wilson coefficients at µ =
O(mt) entering the Hamiltonian in question. The function

C, which appears in these initial conditions along with box
and other penguin contributions, depends on the gauge of
the W propagator, but this dependence enters only in the
subleading terms in m2

t /M
2
W and is cancelled by the one

of the box diagrams.
As we have seen above, the current data for the B →

πK decays favour an increased value of q independently of
γ with respect to the SM estimate, and this implies also a
higher value of the Z0 penguin function C. Performing the
full NLO renormalisation group analysis by means of the
formulae in [33], and assuming that only the function C is
affected by new physics, we find the following approximate
but accurate expression for the dependence of C on q:

C(q̄) = 2.35 q̄ − 0.82, q = q̄

[
0.086

|Vub/Vcb|
]

, (31)

where we have introduced q̄ in order to separate the C
dependence in q from the |Vub/Vcb| dependence. To our
knowledge, this relation appears in the literature for the
first time. On the other hand, in [15], the impact of rather
involved new-physics scenarios that go beyond the MFV
framework on the EW parameters in the B → πK system
has been investigated. However, the authors of [15] did not
simultaneously discuss the correlation with rare K and B
decays. This is the next topic we want to discuss.

4 The rare decays

The function C(q̄) is an important ingredient in any anal-
ysis of rare semi-leptonic K and B decays. Even if QCD
corrections to Z0 penguins in non-leptonic decays differ
from those in the case of semi-leptonic decays, an explicit
two-loop calculation [34] shows that the difference in these
corrections is very small and it is a very good approxima-
tion to use the same Z0 penguin function in non-leptonic
and semi-leptonic decays. Moreover, these differences ap-
pear only at the NNLO level in non-leptonic decays [34],
which is clearly beyond the scope of this paper.

The present best upper bound on the function C follows
from the data on B → Xsl

+l−. A recent update of [32]
given in [18] implies that the maximal enhancement of C
over the SM value cannot be larger than 2–3; that is, C ≤
2.0. Our own analysis of B → Xsl

+l− indicates that indeed
C > 2.0 (for C > 0) and |C| > 2.4 (for C < 0) are very
improbable as they give a BR(B → Xsl

+l−) which is by
more than a factor of 2 larger than the average of the Belle
and BaBar data [35]. In view of substantial experimental
and theoretical errors in the full branching ratio, it would
be premature to attach a confidence level to these findings
but in what follows we will assume that

|C| ≤
{

2.0 C > 0,

2.4 C < 0,
|q̄| ≤

{
1.20 q̄ > 0,

0.67 q̄ < 0,

|q| ≤
{

1.47 q > 0,

0.82 q < 0,
(32)

where we have used (31) to obtain the bounds on |q̄|, and
have then conservatively chosen |Vub/Vcb| ≥ 0.070 to ob-
tain the bounds on |q|. These bounds can be refined in the
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Fig. 5. C as a function of L for |Vub/Vcb| = 0.070, 0.085, 0.100.
The different lines in each band correspond to different γ =
(65 ± 10)◦. The upper bound for L in (33) is obtained for
γ = 75◦ and |Vub/Vcb| = 0.070

future. Finally, taking γ = (65±10)◦, as required by MFV
models [36], we find with the help of (19)

L ≤
{

1.78 q > 0,

1.14 q < 0.
(33)

In Fig. 5, we show C in the case of C > 0 as a function
of L for γ = (65 ± 10)◦ and various values of |Vub/Vcb|.
The different lines in the |Vub/Vcb| bands correspond to
different values of γ. This plot establishes the connection
between B → πK decays and rare K and B decays in the
class of simple models considered here. This connection
will become more precise when the determinations of γ
and |Vub/Vcb| improve.

The allowed values for L in (33) are clearly outside the
1-σ range for L in (22) and more than a factor of 3 below
the central values of L. Moreover, for γ = (65 ± 10)◦, the
allowed range for |q| from B → Kπ decays with L given
in (22) is 1.6 ≤ |q| ≤ 3.1. Consequently, in the context of
the simple new-physics scenario considered here, the en-
hancement of EW penguins implied by the B → πK data
appears to be too strong to be consistent with the data on
BR(B → Xsl

+l−), unless values for L outside the range
(22) – but still higher than the SM value L ≈ 0.2 – are
considered. If this really turned out to be the case, the
enhanced L implied by the B → πK data should be ac-
companied by an enhanced BR(B → Xsl

+l−) close to the
upper limit coming from the Belle and BaBar data. Simi-
larly, the enhanced value of L should be accompanied by
an enhanced forward–backward asymmetry in this decay
that increases with increasing C(q̄).

In this spirit we will now analyse the K → πνν̄ and
KL → π0e+e− decays with the vision that, if B → πK de-
cays indeed signal an enhancement of L and consequently
of C, this enhancement could eventually be tested through
these rare decays.

The branching ratios for K → πνν̄ and KL → π0e+e−
are usually written in terms of the functions X and Y [29],
respectively. These functions are linear combinations of
the C function and the ∆F = 1 box diagram function

that we assume to take the SM value, BSM = −0.182 for
mt(mt) = 167 GeV. To our knowledge, this assumption is
satisfied in all MFV models that have been considered in
the literature.

We find then

X(q̄) = 2.35 q̄ − 0.09, Y (q̄) = 2.35 q̄ − 0.64, (34)

and consequently, using (32),

|X| ≤
{

2.73 X > 0,

1.66 X < 0,
|Y | ≤

{
2.18 Y > 0,

2.21 Y < 0,
(35)

to be compared with X = 1.53±0.04 and Y = 0.98±0.04
in the SM.

Inserting X(q̄) and Y (q̄) in the known expressions for
the branching ratios of various rare decays [29], it is
straightforward to calculate these branching ratios for a
given q and L considered in the context of B → πK de-
cays. Moreover, the correlation between q and the angle
γ in (20) will also have some impact on the rare decays
sensitive to Vtd whereas it has no impact on decays sen-
sitive to Vts. These correlations between the new physics
in B → πK and rare K and B decays are discussed in
more detail in [21]. Below we discuss only selected aspects
of this analysis.

We consider first the decays K → πνν̄ for which the
branching ratios are given as follows [37]:

BR(K+ → π+νν̄)

= 4.75 · 10−11 ·
[
(Im Ft)

2 + (Re Fc + Re Ft)
2
]

, (36)

BR(KL → π0νν̄) = 2.08 · 10−10 · (Im Ft)
2

, (37)

where
Fc =

λc

λ
P0(X), Ft =

λt

λ5 X(q̄) . (38)

Here λi = V ∗
isVid, whereas P0(X) = 0.39±0.06 results from

the internal charm contribution [38], which is assumed not
to be affected by new physics.

Note that for a given value of the angle γ, and the values
of |Vcb| and |Vub/Vcb| ≥ 0.070, the CKM factors λi can be
calculated, and consequently we can study the branching
ratios in question as a function of γ and L. The |Vub/Vcb|
dependence in the relation of C to L shown in Fig. 5 and
the correlation between C(q̄) and γ implied by (20) have
to be consistently taken into account in this analysis.

In Fig. 6a, we show BR(K+ → π+νν̄) as a function
of L for γ = (65 ± 10)◦. The horizontal line represents
the 68% C.L. upper bound following from the AGS E787
collaboration result [39]

BR(K+ → π+νν̄) = (15.7+17.5
−8.2 ) · 10−11. (39)

The sensitivity of BR(K+ → π+νν̄) to γ seen in Fig. 6a
is substantially smaller than in the usual SM analysis.
This feature is due to the correlation between q and γ in
(20), and the correlation between C and γ for fixed L in
Fig. 5: the variations of γ and C > 0 in BR(K+ → π+νν̄)
compensate each other to a large extent.
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Fig. 6a,b. BR(K+ → π+νν̄) as a function of L and L̄ for γ = (65 ± 10)◦

On the other hand, we observe a strong sensitivity of
BR(K+ → π+νν̄) obtained in this manner on |Vub/Vcb|,
which is essentially not present in the usual analysis. This
fact originates in the correlation between C and L in Fig. 5
that depends on |Vub/Vcb|. However, as demonstrated in
Fig. 6b, this dependence in BR(K+ → π+νν̄) can be sum-
marised to a good approximation by introducing the fol-
lowing “scaling” variable:

L̄ ≡ L

( |Vub/Vcb|
0.086

)2.3

. (40)

Then BR(K+ → π+νν̄) depends to a good approximation
only on L̄, with a weak residual dependence on |Vub/Vcb|
and γ. Needless to say, the knowledge of |Vub/Vcb| is essen-
tial for the usefulness of the correlation between B → πK
and rare decays discussed here.

The bound L ≤ 1.8 required by the BR(B → Xsµ
+µ−)

data translates into L̄ ≤ 1.1 and consequently values for
BR(K+ → π+νν̄) as high as 25 · 10−11 are allowed. How-
ever, even for 0.5 ≤ L̄ ≤ 1.0, BR(K+ → π+νν̄) can be
a factor of 2 larger than the SM prediction (7.7 ± 1.2) ·
10−11 [37, 40], and close to the central values of the AGS
E787 experiment. We also note that the present data on
BR(K+ → π+νν̄) put a much weaker constraint on L than
B → Xsµ

+µ−, but this can change in the future as the
K+ → π+νν̄ decay is theoretically cleaner. Since the ex-
perimental situation for KL → π0νν̄ is not as satisfactory,
we mention only that for q̄ = 1.20 this decay is enhanced
roughly by a factor of 3 with respect to its SM value.

Another interesting process is the rare decay KL →
π0e+e− reconsidered recently within the SM [41] in view
of new NA48 data on KS → π0e+e− and KL → π0γγ [42]
that allow a much better evaluation of the indirectly CP -
violating and CP -conserving contributions to BR(KL →
π0e+e−). In order to illustrate the implications of the en-
hanced Z0 penguins on this ratio we set, in the spirit of [30],
all remaining loop functions at their SM values and keep
only the function C as a free parameter. Setting moreover
all other parameters of [41] at their central values, we find

BR(KL → π0e+e−) (41)

= 10−12 [
18.3 + 12.5ȳ7V + 4.4(ȳ2

7V + ȳ2
7A)

]
,

where

ȳ7V = 0.56 + 0.69Y (q̄) − 0.64C(q̄), ȳ7A = −0.69Y (q̄).
(42)

In the SM, ȳ7V = 0.73 and ȳ7A = −0.68 at the NLO
level [43]. Note that ȳ7V depends only very weakly on q̄.

For BR(KL → π0e+e−), we find then with q̄max =
1.20 the central value 4.1 · 10−11 to be compared with
the central value 3.2 · 10−11 within the SM [41] and the
experimental upper bound from KTeV [44]: 2.8·10−10 (90%
C.L.). Even for q̄ = 2.5 one finds 9.1 · 10−11, which is still
compatible with the data. Consequently, this decay does
not offer useful bounds on q and L at present.

Next, we would like to comment briefly on some other
decays that, while not yet observed at the level required
to further tighten the bounds, do exhibit rather striking
effects: these are the decays B → Xsνν̄ and Bs,d → µ+µ−,
where the values in (35) correspond to enhancements over
the SM estimates of the branching ratios by factors of
3.2 and 5.0, respectively. This gives roughly BR(B →
Xsνν̄) = 1 · 10−4, BR(Bs → µ+µ−) = 2 · 10−8 and
BR(Bd → µ+µ−) = 5 · 10−10, all compatible with the
existing upper bounds on these processes. Observation of
these modes at this level could signal the presence of en-
hanced Z0 penguins.

Finally, we can now ask what is the impact of the rare
decays on the Rn–Rc plane in Fig. 3. In Fig. 7, we show
the area close to (1, 1) in the Rn–Rc plane and plot the
contours for q = 0.7 and q = 1.3 (as consistent with (32))
and γ = (65 ± 10)◦. The comments about how variations
of q, b and δc are denoted made in the context of Fig. 3
still apply.

We observe that a modest shift of the experimentally
allowed region brings the values of Rn, Rc and b into
agreement with the scenario that employs an enhanced
C (q = 1.3). A larger shift (corresponding to shifts of each
of the four B → Kπ branching ratios into the respective
preferred direction by 1–1.6 σ) will even move the experi-
mental region towards the contour that only employs the
SM value for q. In both of these cases, however, the strong
phases have to be close to 90◦, implying large direct CP
asymmetries and contradicting QCD factorisation. As can
be seen clearly from Fig. 7, small values of δc correspond-
ing to small direct CP asymmetries can only be obtained
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Fig. 7. Allowed regions in the Rn–Rc plane for q = 0.7 and q = 1.3. The grey rectangle represents the lower right-hand corner
of the experimental 1-σ region that can be fully seen in Fig. 3

for Rn � 1.1, which is currently consistently disfavoured
by all three experiments. Small asymmetries are also ob-
tained for Rc, Rn < 1, but in this case δc, δn ≈ 180◦ (c.f.
Fig. 2).

5 Conclusions

The current data on B → πK decays cannot be eas-
ily explained within the standard model. Extending the
2000 analysis of two of us, we have demonstrated that the
present data on these decays can be correctly described,
provided we have the following.
(1) The EW penguin parameter q is by a factor of 2–4
larger than its SM value;
(2) the strong phases δc and δn are large and in particular
cos δn is negative.

These findings are true for any value of the angle γ
so that changing only γ does not solve the problem if the
former two conditions are not satisfied.
(3) Consequently, the present data indicate that the cor-
rections to factorisation are significantly larger than esti-
mated in the QCD factorisation approach and, moreover,
new-physics contributions may be signalled.

Using the general parametrisation of B → πK decays
proposed in [8], we have derived a number of new rela-
tions with the help of the SU(3) flavour symmetry, taking
factorizable SU(3)-breaking corrections into account. In
particular we see the following.
(1) The B → πK data imply a correlation between q and γ

which depends on a single variable L. This quantity mea-
sures the violation of the Lipkin sum rule and can be de-
termined experimentally. In the case of q > 0, an increase
of γ decreases the q required to fit the data. Moreover, q
increases with increasing L.
(2) The CP -conserving strong phase difference δn − δc is
correlated with q and δc, and increases with q and sin δc.
(3) The measurement of the four CP -averaged B → πK
branching ratios allows us to determine q, γ, δc and δn.
(4) Consequently, the fact that an increase of q allows us
to obtain straightforwardly an agreement with the data
should be considered as very non-trivial.
(5) We have proposed to monitor these correlations in the
form of allowed regions in the Rn–Rc plane.

Concentrating then on a MFV new-physics scenario
with enhanced Z0 penguins, we have derived relations be-
tween the parameter q relevant for B → πK decays and
the functions C, X and Y that enter the branching ratios
for rare K and B decays. This allowed us to analyse the
correlations between the latter decays and the B → πK
system with the following findings.
(1) In the context of the simple new-physics scenario con-
sidered here, the enhancement of EW penguins implied by
the B → πK data appears to be too strong to be con-
sistent with the data on BR(B → Xsl

+l−): whereas the
latter decays imply L ≤ 1.8, the B → πK data requires
L = 5.7±2.4. Consequently, either L has to move to smaller
values once the B → πK data improve, or new sources of
flavour and CP violation are needed.
(2) Enhanced values of L, while still smaller than those
calculated from the present B → πK data, could be ac-
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companied by enhanced branching ratios for the rare de-
cays K+ → π+νν̄, KL → π0e+e−, B → Xsνν̄ and Bs,d →
µ+µ−.
(3) In particular, we have found a correlation between the
B → πK modes and BR(K+ → π+νν̄), with the latter de-
pending approximately only on a single “scaling” variable
L̄ = L · (|Vub/Vcb|/0.086)2.3. For L ≈ 1.0, an enhancement
of BR(K+ → π+νν̄) by a factor of 2 with respect to the
SM is expected.

In order to describe our results in a transparent manner,
we have neglected rescattering effects, colour-suppressed
EW penguins, and the strong phase ω, which enters the
EW penguin parameter q and is predicted to vanish in the
SU(3) limit. These effects are incorporated in the general
parametrisation presented in [8] and will be discussed in
detail in [21]: we find that rescattering effects have a mi-
nor impact and cannot explain the B → πK puzzle. The
inclusion of colour-suppressed EW penguins makes this
puzzle slightly more pronounced, i.e. the required value
of q increases. Larger effects could emerge from a non-
vanishing value of ω, as already discussed in [8, 9], but as
long as ω ≤ 20◦, also these effects are small. It should
be recalled that a non-vanishing ω could come only from
non-factorizable SU(3)-breaking effects and a value sub-
stantially larger than 20◦ appears to be very unlikely.

It will be very exciting in the next couple of years to
follow the development of the values of Rc,n, R, rc,n, b, q
and δc,n, and to monitor the allowed regions in the Rn–
Rc plane. Equally interesting will be the correlation of the
B → πK data with those for rare B and K decays for which
more accurate measurements should soon be available.

Acknowledgements. We thank Andreas Weiler for very useful
discussions. This research was partially supported by the Ger-
man “Bundesministerium für Bildung und Forschung” under
contract 05HT1WOA3, and by the “Deutsche Forschungsge-
meinschaft” (DFG) under contract Bu.706/1-2.

References

1. M. Gronau, EFI-03-31 [hep-ph/0306308]; J.L. Rosner, EFI-
03-16 [hep-ph/0304200]; R. Fleischer, Phys. Rep. 370, 537
(2002)

2. R. Fleischer, Phys. Lett. B 365, 399 (1996)
3. R. Fleischer, T. Mannel, Phys. Rev. D 57, 2752 (1998)
4. M. Gronau, J.L. Rosner, Phys. Rev. D 57, 6843 (1998)
5. R. Fleischer, Eur. Phys. J. C 6, 451 (1999); Phys. Lett. B

435, 221 (1998)
6. M. Neubert, J.L. Rosner, Phys. Lett. B 441, 403 (1998);

Phys. Rev. Lett. 81, 5076 (1998)
7. M. Neubert, JHEP 9902, 014 (1999)
8. A.J. Buras, R. Fleischer, Eur. Phys. J. C 11, 93 (1999)
9. A.J. Buras, R. Fleischer, Eur. Phys. J. C 16, 97 (2000)

10. A. Bornheim et al. [CLEO Collaboration], hep-ex/0302026
11. B. Aubert et al. [BABAR Collaboration], hep-ex/0207065;

B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett.
91, 021801 (2003); M. Bona, talk at the Conference on
Flavour Physics and CP Violation (FPCP 2003), Paris,
France, June 3–6, 2003, to appear in the Proceedings

12. T. Tomura, hep-ex/0305036
13. R. Fleischer, J. Matias, Phys. Rev. D 66, 054009 (2002);

for an update, see R. Fleischer, Mod. Phys. Lett. A 18,
1413 (2003)

14. R. Fleischer, T. Mannel, TTP-97-22 [hep-ph/9706261]
15. Y. Grossman, M. Neubert, A.L. Kagan, JHEP 9910, 029

(1999)
16. T. Yoshikawa, KEK-TH-894 [hep-ph/0306147]
17. M. Gronau, J.L. Rosner, EFI 03-34 [hep-ph/0307095]
18. D. Atwood, G. Hiller, LMU-09-03 [hep-ph/0307251]
19. M. Beneke, M. Neubert, CLNS-03-1835 [hep-ph/0308039]
20. A.J. Buras, P. Gambino, M. Gorbahn, S. Jäger, L. Sil-
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